Advances in the Integration of Watershed and Lake Modeling in the Lake Winnipeg Basin
نویسندگان
چکیده
Estimating non-point source pollution from watersheds and the effects of mitigation measures (e.g. beneficial management practices or BMPs) is an important step in managing and protecting water quality, not only at the basin level where it originates, but also at the receiving waters such as reservoirs, lakes or oceans. Lake Winnipeg is a prime example of such land-lake interactions, where eutrophication and increased algal blooms in the lake are fueled, as evidence suggests, from agricultural sources of nutrients in the region. Over the years, simulation models at the watershed level have been applied to aid in the understanding and management of surface runoff, nutrients and sediment transport processes. Similarly, models with different degrees of complexity are used to simulate the aquatic ecology and water quality in lakes. The Soil and Water Assessment Tool (SWAT) is a widely known watershed model, which provides estimations of runoff, sediment yield, and nutrient loads at a sub-basin level. Here we examine the application of SWAT to one of three pilot watersheds on the Lake Winnipeg basin in order to investigate the impacts and uncertainties of different BMPs on nutrient loading in the targeted catchment areas. We also explore avenues for scaling and propagating such loads and uncertainties into the receiving lake models.
منابع مشابه
Investigation of the performance and accuracy of multivariate timeseries models in predicting EC and TDS values of the rivers of Urmia Lake Basin
Considering the complexity of hydrological processes, it seems that multivariate methods may enhance the accuracy of time series models and the results obtained from them by taking more influential factors into account. Indeed, the results of multivariate models can improve the results of description, modeling, and prediction of different parameters by involving other influential factors. In th...
متن کاملModeling Lake Urmia Water-Level Changes using Local Linear Neuro-Fuzzy Method
According to the water resources and climate change and challenges of Urmia Lake basin, which is the discharge and final destination of North West Rivers, a model was presented. Due to climate change and water resources in river basin such as rainfall, climate change in basin that has direct impact on evaporation over water catchment areas and lake water, this model can be provided. In addition...
متن کاملModeling Past Episodes of Erosion in the Lake Orūmiye (Urmia) Basin: Analogues for Future Landscape Dynamics
During the Holocene Lake Orūmiye has been subjected to significant changes in climate. These have impacted the surround vegetation and runoff, and erosion rates of the surrounding basin. Shifts in seasonal rainfall from winter to summer dominated patterns have resulted in dramatic changes in the Orūmiye Basin’s vegetation cover from grass to shrub dominated communities. The degree of ground sur...
متن کاملModeling the effects of climate change on the distribution of Acanthalburnus urmianus (Günther, 1899) in Urmia lake basin rivers
According to the reports of the International Panel Climate Change (IPCC) there is no doubt about climate change occurring. All ecosystems on the earth have being concerned by the effects of climate change. Urmia lake basin and its rivers exposed to numerous anthropogenic stressors such as hydrological, morphological, connectivity and water quality pressures. The main objective of this study is...
متن کاملA new method for evaluation and comprehensive drought Monitoring in the Urmia Lake Basin using a Synthesized Drought Index (SDI)
Drought is a complex phenomenon caused by the breaking of water balance and it has always an impact on agricultural, ecological and socio-economic spheres. Although the drought indices deriving from remote sensing data have been used to monitor meteorological or agricultural drought, there are no indices that can suitably reflect the comprehensive information of drought from meteorological to a...
متن کامل